Direction for Exercises 65 to 69:

Verify the Rolle's theorem for each of the functions in these exercises.

65.
$$f(x) = x(x-1)^2$$
 in [0, 1].

Sol. We have,
$$f(x) = x(x-1)^2$$
 in [0, 1]

Since, $f(x) = x(x-1)^2$ is a polynomial function it is continuous in [0, 1] and differentiable in (0, 1)

Now,
$$f(0) = 0$$
 and $f(1) = 0 \Rightarrow f(0) = f(1)$

f satisfies the conditions of Rolle's theorem.

Hence, by Rolle's theorem there exists at least one $c \in (0, 1)$ such that

$$f'(c) = 0$$

$$\Rightarrow 3c^2 - 4c + 1 = 0$$

$$\Rightarrow (3c - 1)(c - 1) = 0$$

$$\Rightarrow c = \frac{1}{3} \in (0, 1)$$

Therefore, Rolle's theorem has been verified.

69.
$$f(x) = \sqrt{4-x^2}$$
 in [-2, 2]

Sol. We have,
$$f(x) = \sqrt{4-x^2} = (4-x^2)^{1/2}$$

Since $(4 - x^2)$ and square root function are continuous and differentiable in their domain, given function f(x) is also continuous and differentiable in [-2, 2]

Also
$$f(-2) = f(2) = 0$$

So, conditions of Rolle's theorem are satisfied.

Hence, there exists a real number $c \in (-2, 2)$ such that f'(c) = 0.

Now
$$f'(x) = \frac{1}{2}(4-x^2)^{-1/2}(-2x) = -\frac{x}{\sqrt{4-x^2}}$$

So, $f'(c) = 0$

$$\Rightarrow -\frac{c}{\sqrt{4-c^2}} = 0$$

$$\Rightarrow \qquad c = 0 \in (-2, 2)$$

Hence, Rolle's theorem has been verified.